Substructure Discovery Using Minimum Description Length and Background Knowledge
نویسندگان
چکیده
منابع مشابه
Substructure Discovery Using Minimum Description Length Principle and Background Knowledge
Discovering conceptually interesting and repetitive substructures in a structural data improves the ability to interpret and compress the data. The substructures are evaluated by their ability to describe and compress the original data set using the domain’s background knowledge and the minimum description length (MDL) of the data. Once discovered, the substructure concept is used to simplify t...
متن کاملSubstructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our Subdue substructure discovery system based on the minimum description length principle. The Subdue system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previo...
متن کاملMinimum Description Length Criterion
he intelligibility of speech in communication systems is generally reduced by interfering noise. This interference, which can take the form of environmental noise, reverberation, competing speech, or electronic channel noise, reduces intelligibility by masking the signal of interest. The reduction in intelligibility is particularly troublesome for listeners with hearing impairments, who have gr...
متن کاملMinimum Description Length Principle
The minimum description length (MDL) principle states that one should prefer the model that yields the shortest description of the data when the complexity of the model itself is also accounted for. MDL provides a versatile approach to statistical modeling. It is applicable to model selection and regularization. Modern versions of MDL lead to robust methods that are well suited for choosing an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 1994
ISSN: 1076-9757
DOI: 10.1613/jair.43